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In this paper the method of critical curves, a tool for the study of the global dynamical properties of
two-dimensional noninvertible maps, is applied to the study of chaos synchronization and related phenomena
of riddling, blowout, and on-off intermittency. A general procedure is suggested in order to obtain the bound-
ary of a particular two-dimensional compact trapping region, cadlbdorbing area containing the one-
dimensional chaotic set on which synchronized dynamics occur. The main purpose of the paper is to show that
only invariant and minimal absorbing areas are useful to characterize the global dynamical behavior of the
dynamical system when a Milnor attractor with locally riddled basin or a chaotic saddle exists, and may
strongly influence the effects of riddling and blowout bifurcations. Some examples are given for a system of
two coupled logistic maps, and some practical methods and numerical tricks are suggested in order to ascertain
the properties of invariance and minimality of an absorbing area. Some general considerations are given
concerning the transition from locally riddled to globally riddled basins, and the role of the absorbing area in
the occurrence of such transition is discus$8d.063-651%98)11611-2

PACS numbd(s): 05.45+b

I. INTRODUCTION mainly for the case in which the dynamics restricted to the
Dynamical systems with an invariant submanifold oflrggéi?:r;:ug?g{;;fo:g ?erg tgzatoot '?heso ;22;2;3;%&” of
lower dimensionality than the total phase space have com- y P

manded increasing interest in the scientific community insynchronlzanonl.e., trajectories that start outsideand are

recent years. Attracters in Milnor's senéRef. [13]), not attracted toward a one-dimensional chaotic attraétgr S

stable in the Lyapunov sense, appear quite naturally in thi%see the Ref46,7] or, for more recent results, Refd,5]). A

context, together with striking phenomena like on-off inter- ypical example of chaos synchronization, naturally met in

mittency and riddled basins, and also interesting kinds Oﬂjnaerl)éinizﬁi?ggiglnsﬁgitigbr;igeme/ CO[;?;E% t‘i\% identical
bifurcations like riddling (or bubbling bifurcations and » €9, Ak

blowout bifurcationsisee, e.g., Ref§1-5)). In the recent literature, stability statements about chaos

In this paper we study some global properties of tWO_synchronization have been given in terms of thmsve_rse
dimensional discrete dynamical systems, defined by the itl__yapunov exponentél_’h_e key property IS tha.‘t a c_haotlp at-
eration of a map of the form t.ra.ctorAs of the (es'_[nctlonf:Tlls includes W|th|n. itself in-

finitely many periodic orbits which are unstable in the direc-
tion alongS and for the two-dimensional dynamical system

(XY =Ty)=(T1(x,y), T2(xy)) (1) the invariant sef is asymptotically(Lyapunoy stable, i.e.,

attracting in the usual topological sense, if all the cycles
that possesses an invariant one-dimensional submarfifold embedded in it are transversely statde equivalently, if the
The very particular feature of the invariance of a submanidargest transverse Lyapunov exponent is negatilewever,
fold becomes generic if the maphas some symmetry prop- it may occur that some cycles embedded into the chaotic set
erty, a situation that often occurs in applications. The trajecAs become transversely repelling even if thatural trans-
tories embedded int§, whose dynamics are governed by the verse Lyapunov exponert, is still negative, due to the
one dimensional restriction afto S, sayf=T|g, are called presence of many other transversely attracting orbits embed-
synchronized trajectories The existence of such one- ded insideA; (by the term “natural Lyapunov exponent,”
dimensional dynamics embedded into the two-dimensionalve mean the Lyapunov exponent associated to the natural
phase space df raises the question, recently investigated bymeasure, i.e., computed for a typical trajectory on the chaotic
many authors, of whether an attracté, of the one- attractorAy). In this caséAs is no longer a Lyapunov attrac-
dimensional restrictiorf is also an attractor of the two- tor, i.e., a two-dimensional neighborhobidof Ag exists such
dimensional maf, and in what sensesee, e.g., Refl] and that in any neighborhoo C U there are point¢really a set
references therein of points of positive measuyrehat exitU after a finite num-

Of course, an attractdk of the restrictiorf is stable with  ber of iterations, but it continues to be attracting “on the
respect to perturbations alogyso an answer to the question average” or, more precisely, it is an attractor in Milnor sense
addressed above can be given through a study of the stabilitgee Refs[13,4]), which means that it attracts a positive
of A with respect to perturbations transvers&taransverse (Lebesgug measure set of points of the two-dimensional
stability). Results on transverse stability have been obtaineghase space. The transition from asymptotic sta-
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bility to attractivity only in Milnor sense is denoted as a In a recent papefl9], the notion of absorbing area was
riddling bifurcationin Ref.[14] (or abubbling bifurcationin introduced in the physical literature for the study of a system
Refs.[11,15,14. of coupled chaotic oscillators, and the authors suggested that
Even if the occurrence of such bifurcations is detectedhe method of critical curves may be used to characterize the
through the study of the transverse Lyapunov exponentgjlobal effects of riddling and blowout bifurcations, and that
their effects depend on the action of the nonlinearities facontacts of an absorbing area with basin boundaries may
from S that is, on the global properties of the dynamicalreveal a transition from locally to globally riddling.
system. In fact, after the riddling bifurcation two possible = The methods used Reff26,25,19 are fairly general in
scenarios can be observed according to the fate of the trajethe study of the problems related to chaotic synchronization
tories that are locally repelled alorigr neaj the local un-  in symmetrically coupled chaotic oscillators. In fact, such
stable manifolds of the transversely repelling cycles: systems are generally represented by two-dimensional non-
SituationL: they can be reinjected towar&dy the action invertible maps, since in this case the restriction of the map
of the nonlinearities acting far froi§, so that the dynamics to the one-dimensional invariant submanifold of synchro-
of such trajectories are characterized by some bursts far fromized trajectories may be chaotic. So the critical curves, a
S before synchronizing on ifta very long sequence of such powerful tool for the study of global dynamics and bifurca-
bursts, which can be observed whén is close to zero, was tions in noninvertible maps, may be used.
called on-off intermittency in Ref.3]). An important question, which was not considered in Ref.
SituationG: they may belong to the basin of another at-[19], is that an absorbing ared, characterized by the prop-
tractor, in which case the phenomenon of riddled bagig €'y T(A)C.A, may be invariant, i.e., exactly mapped into

is obtained. itself, T(A)=A, or strictly mapped into itselfT(.A)C A.
Some authors calbcal riddling situationL and, by con- "€ purpose of the present paper is to show that only the
trast, global riddling situationG (see Refs[4,17—19). delimitation of aninvariant absorbing areds important in

order to characterize the global properties which influence
the qualitative effects of riddling or blowout bifurcations.
rl\/loreover, several invariant absorbing areas may often be

. ) . observed, one embedded into the other. In these cases the
weight with respect to the transversely attracting ofsee minimal invariant absorbing areashould be used, where

Ref.[5) a *?'OWO‘“ blfurcgtlonoccurs, after _Wh'cms SN0 minimal means the smallest one including the Milnor attrac-
longer a Milnor attractokit becomes achaotic saddl§20]; 5 on which synchronized dynamics occur.

also see Refl1]). Also the macroscopic effect of a blowout  \y/e give some examples, by using the same system of two
bifurcation is strongly influenced by the behavior of the dY'coupIed one-dimensional maps considered in RE9), in
namical system far from the invariant submanif@dthe  order to illustrate how the boundary of an invariant absorb-
trajectories starting close to the chaotic saddle may be aing area can be obtained by segments of critical curves. Then
tracted by some attracting set far fr@ithat may also be at we address the questions of invariance and minimality prop-
infinity, i.e., diverging trajectorigsor may remain inside erties of an absorbing area, and we show that if either the
some two-dimensional compact set located near or aroungvariance condition or that of minimality is relaxed, then the
the chaotic saddlé. As noted by many authorsee, e.g., absorbing area cannot be used for the purposes stated above.
Refs.[3,11,4,10), the study of transverse Lyapunov expo- The determination of the minimal invariant absorbing area is
nents, which is based on the linear approximation of the mapot an easy task. So, in order to overcome these difficulties,
T aroundsS says nothing about the fate of the locally repelledin Sec. V we suggest the trick of a “parameter mismatch,”
trajectories, and the occurrence of the different scenarios d&vhich turns to be useful in many situations.

scribed above is determined by the global properties of the Some observations on the transition from local to global
map. When Eq(1) is a noninvertible map, as generally oc- riddling are given in Sec. VI. In the recent literature the
curs in problems of chaos synchronization, the global dy+transition from locally to globally riddling has been consid-
namical properties can be usefully described by the methodred as a particular bifurcation involving local-global dy-
of critical curves(see Refs[21-23), and the reinjection of namics of the map. Here we argue, by an example, that such
the locally repelled trajectories can be described in terms ofransition may occur several times between the riddling and
their folding action.[See, e.g., Refd22] or [24] for a de-  blowout bifurcations, and that the concept of absorbing area
scription of the geometric properties of a noninvertible mapmay give some help in order to understand such phenomena.
related to the foldindor foliation) of its phase spackThis

idea was recently proposed in R¢R5] for the study of

symmetric maps arising in game theory, and 26] for the Il. CRITICAL CURVES AND THE CONSTRUCTION

study of the effects of small asymmetries due to parameters OF AN ABSORBING AREA

mismatches. In these two papers the geometric properties of

the critical curves were used to obtain the boundary of a A two-dimensional mapr:(x,y)—(x',y’), defined by
compact trapping region, called tladsorbing areafollow- Eqg. (1), is said to be noninvertible if the rank-1 preimages
ing Ref.[22], inside which intermittency and blowout phe- (x,y)=T *(x’,y’) of a point x’,y’)eR? obtained by
nomena are confined. In other words, the critical curves arsolving systen{1) with respect tox andy, may be more than
used to bound a compact region of the phase plane that agesie or may not exist. In this case, the plane can be subdi-
as a trapping bounded vessel, inside which the trajectoriegded into regionsZ,, k=0, whose points havé& distinct
starting neaiS are confined. rank-1 preimages. Generally, as the poirt,§’) varies in

When the natural transverse Lyapunov exponentalso
becomes positive, due to the fact that the transversely u
stable periodic orbits embedded in#d; have a greater
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the p|aneR2, pairs of preimages appear or disappear as isuch a region is mapped into itself, then it is an absorbing
crosses the boundaries separating different regions; henéseaA. The length of the initial segment is to be taken, in
such boundaries are characterized by the presence of at leggtneral, by a trial and error method, although several sug-
two coincident(merging preimages. This leads to the defi- gestions are given in the books referred to above. Once an
nition of the critical curves, one of the distinguishing fea- absorbing areal is found, in order to see if it is invariant or
tures of noninvertible maps. Following the notations of Refsnot, the same procedure must be repeated by taking only the
[21-23, the critical set LC (from the French “ligne cri- portion

tique”) is defined as the locus of points having two, or more,

coincident rank-1 preimages, located on a(set of merging vy=ANLC_, 3
preimage$ calledLC_;. LC is the two-dimensional gener-
alization of the notion of critical valuéwhen it is a local
minimum or maximum valueof a one-dimensional ma i . . .
(this terminology and notation originate from the notionpof Case |: The union ofm lterates ofy (for a swtaplem)
critical points as it is used in the classical works of Julia and*OVers the Whol_e boundary ofl, in which caseA is an
Fatoy, andLC_; is the generalization of the notion of the Invariant absorbing area, and

critical point(when it is a local extremum pointArcs of LC

as the starting segment. Then one of the following two cases
occurs:

m
separate regions of the plane characterized by a different dAC U TK(y). (4)
number of real rank-1 preimagésee Refs[21-23). We k=1
also recall that the critical sets of ramkare the images of _
rank k of LC_; denoted by LC,_;=TXLC_,) Case II: No naturalm exists such that)_; T'(y) covers
=Tk"1(LC), LC, beingLC. the whole boundary of4; in which caseA is not invariant

Points of LC_; in which the map is differentiable are but strictly mapped into itself. An invariant absorbing area is
necessarily points where the Jacobian determinant vanishesbtained byN,-,T"(.A) (and may be obtained by a finite
in fact in any neighborhood of a point &fC_, there are at number of images ofd).

least two distinct points which are mapped Dyn the same The distinction between the two cases is fundamental in
point (near LC); hence the map is not locally invertible in order to consider a contact between the boundary of the ab-
these points. This implies, for a differentiable mgpthat sorbing area and some other invariant ($ige the boundary

of a basin which generally causes changes for the fate of the
trajectories which are locally repelled from the Milnor attrac-
tor. For this purposenly invariant absorbing areas are use-
ful, because boundary contacts of noninvariant ones gener-

The condition of a vanishing Jacobian is necessary foplly have no consequences on the invariant sets which are
differentiable maps, but not sufficient to detect a criticalStrictly included inside the absorbing areas.
point of LC_, as defined abovig.e., the inclusion in Eq(2) In order to illustrate these concepts let us consider the
may be strick The notion of critical curve was introduced by two-dimensional mag-, proposed in Ref[19], given by a
Gumowski and Mira in connection with the problem of non- System of coupled logistic maps:
connected basins and basin bifurcati¢sse Ref[21]). Seg-
ments of critical curves can be used in order to define trap- F:xy)=(fa)+e(y—x), fa(y)+e(x=y)), (5
ping regions of the phase plane, called absorbing areas. An

absorbing areaA is a bounded region of the plane whose wherefa(>_<)=ax(1—x) is the standard I_ogistic map, aaqs
boundary is given by critical curve segmertgegments of the coupling parameter. We refer to this map only to give an

the critical curveLC and its imagessuch that a neighbor- example, but the arguments and the constructions given be-

hoodU D A exists whose point enter$ after a finite number IowMare f5airlly gerlgral. v diff tiable in the whole bl
of iterations and then never escape it, sifi¢el) C A, i.e., A ap (5) is continuously differentiable in the whole plane

2 H H _ —
is trapping(see Ref[22], Chap. 4 for more details R®, and in this case we haueC_,=J, [andLC=F(Jo)],

Indeed, in noninvertible maps, boundaries of trapping re-WhereJO is the locus of points in which the Jacobian van-

gions can also be obtained by the union of segments of critiShes:
cal curves and portions of unstable sets of saddle cycles, and

in this case we have so-calletbsorbing areas of mixed type

(see Ref.[22]). Here we do not enter into such technical The equation deBfF)=0 defines an equilateral hyperbola in

details,_ as in the_ examples given in this paper o_nly standarfhe plane(x,y); henceL.C_; is formed by two branches, de-
absorbing areasi.e., completely bounded by critical ajcs (@) (b) . L
noted byLC'® andLC'"; in Fig. 1. This also implies that

are used. However, the arguments of the present paper rﬁb s th : £ wo b h denoted @)
main substantially unchanged if absorbing areas of mixed IS (a)e union (S)_ 0 (E?nc es, encza()e yC
type are encountered instead of standard absorbing areas.~ I (LC*1) andLC™'=F(LCTy). BranchLC™ separates

Following Refs[22] or [23], a practical procedure can be reglonZO,.Whose points h_a\{e no preimages, from region
outlined in order to obtain the boundary of an absorbing areshose points have two distinct rank-1 preimages, 6¢
(although it is difficult to give a general methodStarting ~ Separates regiod, from regionZ,, whose points have four
from a portion ofLC_, approximately taken in the region distinct rank-1 preimages. Notice thaC'®), intersectsS in
occupied by the area of interest, its imagesTtof increasing  the critical point of the restrictiorf,, and, consequently,

rank are computed until a closed region is obtained. Whe. C® intersects S in the point where the restriction

LC_;CJo={(x,y) e R?|detDT(x,y)=0}. 2

Jo={(x,y) e R?|de(DF(x,y))=0}.
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a=35 g=-1 a=35 g=-1

a=a £=-104 a=a e=-1.04
12 12
y y
LCY
e
0 0
0 (a) x 12 0 (b) X 1.2

FIG. 1. (a) The set of merging preimagdsC_, defined, for :
map (5), as the locus], of the vanishing Jacobiar{b) Critical ’ x 11
curvesLC=F(LC_,). The regionsZ, represent the set of points a,=a,=3.59257218 a,=3.5926¢=-1.04
havingk distinct preimages. The points &iC® have two preim- 11 z
ages, merging o C®) the points ofLC® have four preimages, y
two of which merge or.C®)} .

f, attains its maximum value. Instead the image of the othe
intersection ofLC_; andSis a cusp point of.C.

Following Ref.[19], we now consider fixed values of the
parametera such that a chaotic attract@y; of the logistic
map f, exists, with an absolutely continuous invariant mea-
sure onAg, and we study the transverse stability/fC S as 0 x 11 0 x 11
the coupling parameter varies. We remark that is anor- © @
mal parameterthat is, it influences the stability in the trans- g5 5 Fora=a, ands = — 1.04, a chaotic 2-cyclic Milnofnot
verse directions but it does not affect the dynamics in thgopologica) attractor is embedded into the invariant diagonal. For
invariant diagonalS. Suitable values of the paramet@rat  this set of parameters the natural transverse Lyapunov exponent is
which chaotic intervals for the logistic map exist, ae a; A, =-0.64x10"2. The gray region represents the basin of infinity
for i=0,1,2 ..., such that, at each valug the first ho- (divergent trajectorigs(a) A generic trajectory starting in the white
moclinic bifurcation of a cycle of periodi2bccurs, causing region synchronizes to the diagonal after several bursts out of it,
the reunion of 21 chaotic intervals into 2chaotic intervals, ~Showing a typical intermittent behavicib) The same trajectory as
merging in the repelling periodic points of the cycle of pe- that.shov.vn in(a) is rgpresented without the garly 2000 |ter§(e$.
fiod 21 The 2 cyclic chaotic intervals give the sét, on S An invariant absorbing areal around the Milnor attractor is ob-

I . tained by iterating the generating ar¢ y=ANLC_;
For example, fom=a,=3.678 57351042. .., A is & =g,Ug,Ugs, given by the union of three disjoint pieces &f,

_one-piecg chaotic i”tefYa" (_1ue to t_he merging of two Chf"qtiq*epresented by gray arcs. Four iterates yofdenoted byL, ;
intervals into the repelling fixed point different from the ori- _ FX(y), k=1, ...,4, arerepresented by black curve) A typi-
gin, which undergoes its first homoclinic bifurcation. In the ¢ trajectory starting from the diagonal after a parameter mismatch

examples given below we Sha” a_Iso considar=a;  has been introduced, obtained wih=a, in the first equation of
=3.592572 184 106B. . ., atwhich A is a two-band cha- Egs.(9), anda,=3.5926 in the second one.

otic set, becausa; is the parameter value at which the

period-2 cycle of the logistic map undergoes the first ho- N
moclinic bifurcation, and two cyclic chaotic intervals are ob- A, =lim X, In|2—2ax,—2s|, (6)
tained by the merging of 4-cyclic chaotic intervals. N—®n=1

where{x,} is a generic trajectory oAg, becomes positive.
IIl. INVARIANT ABSORBING AREA Now let us consider the case=a;, with t_he coupling _
parametere = —1.04. From the arguments given above, in
Map (5), with a=a;, turns out to be quite useful to give such a situatior is a Milnor (not asymptoti attractor. A
a first example of invariant absorbing area, and will also giveypical trajectory starting near it synchronizes after a few
us the opportunity to comment, in Sec. VI, on some bifurca-bursts out of it. This is illustrated in Fig(&, where one of
tions occurring inside it. As stated in R¢27], fora=a, the  such trajectories is shown. The same trajectory is given in
two-band chaotic seA,C S is an asymptoti¢Lyapunoy at-  Fig. 2(b), where the early 2000 iterates are not represented.
tractor of the magF for e,<e<e,, with e;=—1.464 . .. The comparison of these two figures suggests that we have
and e,=—1.1% ... (denoted as interval of strong trans- chaotic synchronization after some bursts away from the di-
verse stability in Ref[27]). At e=¢, a riddling bifurcation agonal, during the transient, represented by the points out of
occurs, due to the loss of transverse stability of a cycle othe diagonal in Fig. @). Numerical explorations suggest that
period 2 embedded insidk; and, as the coupling parameter a similar behavior is obtained for the generic trajectory start-
e is further increased, at=¢,, with ¢,=—1.03& ..., a ing from the white region of Fig. ®), whereas the trajecto-
blowout bifurcation occurs, i.e., the natural transverseries starting from the gray region go to infinity. Figuréap
Lyapunov exponent suggests that the intermittency phenomena observed during
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the transient part of the trajectories are confined inside a gc.ANJ,, (7
compact region of the phase plane, since the trajectories that

are locally repelled are folded back toward the diagonal byand the strict inclusion in Eq7) may occur for two reasons.
the global dynamics of the map. In this case an absorbing (i) The locusJ, of the vanishing Jacobian, andinJ, as
areaA, inside which the Milnor attractoh, is included, can  well, may include a set of points which do not belong to the
be easily obtained. Let us consider the set ANLC_;,  critical set of rank O in the Julia-Fatou sense, denoted by
(LC_1=J, for the mapF). It is made up of three disjoint L C_,, to which g must belong. Really Eq(7) is not the
arcs, sayy=g,;Ug,Ug; [see Fig. Z)], and its first four more appropriate notation for the generating growhich
images byF are necessary to cover the bounda# of the  should be

invariant absorbing area, that is, case | of the procedure de-

scribed in Sec. Il occurs. Moreover, these four images, de- gCANLC_,. (8)
noted byL,_;=FX(vy), k=1, ...,4, inFig. 2(c), necessarily

include several arcs internal to the invariant arkarhat is, (i) Even if the setdNJ, is entirely made up of critical
the boundary ofA is strictly included in the union of the segments belonging toC_,, it may occur that only a por-
images:d.AC Uy _ F(y). tion of this set is involved in the definition of the boundary

We remark that the same procedure has been followed iof A because the other portions have images that are always
Ref. [19], where in order to define the boundaty of an internal to.A (an example is given in Ref28], and another
absorbing aread, the portion ofJy belonging to.4, here  example is given below, in Sec.)Mn other words, the in-
calledy, is considered, and a finite number of imagééy), clusion given in Eq(8) also may be strict.
k=1, ... m, is taken in order to obtain the whole boundary To end this section, we remark that the shape of the ab-
of A. However, Relation(6) given in Ref.[19], i.e.,, A  sorbing area4 around the Milnor attractor gives us clear
=UL,FX(y), is not correct and, evidently, the inner por- information about the consequences of the blowout bifurca-
tions of the critical curves have been canceled to obtain Figtion that occurs as the coupling parameter is increased be-
4 in Ref.[19]. yond e=¢y. In fact, for values ofe just after the blowout

The images of the critical arcs which are mapped insidébifurcation, we expect that, the séf no longer being at-
the area play a particular role, because these curves represéfacting in the averagét becomes a chaotic saddlex ge-
the “foldings” of the Riemann plane under forward itera- neric trajectory will move erratically inside the whole ab-
tions of the map, and this is the reason why these innesorbing area. However, in order to make such a prediction
curves often denote the portions of the region which areve need to know that two important properties hold: the
more frequently visited by a generic trajectory inside itinvarianceand theminimality of the absorbing areal. In
(many examples that support this statement are given in thec. IV we give an example of an absorbing area which is
literature on noninvertible maps; see, e.g., R2g)). not invariant, and in Sec. V we give an example of an in-

In the situation shown in Fig. 2, all the trajectories startingvariant absorbing area which is not minimal. In both cases a
inside such an absorbing area are necessarily trapped insidentact bifurcation of their boundary is not useful to charac-
it, and those starting from a neighborhood4tnterA after  terize the different scenarios related to riddling or blowout
a finite number of iterations and then never escape. The albifurcations of the chaotic seét;.
sorbing area behaves as a global vessel for all the trajectories
which are repelled away from a local neighborhood of the IV. NONINVARIANT ABSORBING AREA
chaotic saddle\.

However, just a few bursts are visible due to the negativ- To explain the construction of the boundary of an absorb-
ity of the natural Lyapunov exponent, which implies that theing area better, we consider another example, the one given
trajectories synchronize to the Milnor attractdtCS. As  in Ref.[19], to construct an absorbing area fara, and
will be discussed in Sec. V, a simple method that can be=—1.234. For this set of parameters, considering an arc of
followed to ascertain the existence and shape of an invariadtC_,, for example the ar¢CD) in Fig. 3(a), and a small
absorbing area consists in the introduction of a small paramportion of the other branch dfC_; including the critical
eter mismatch which breaks the symmetry of the dynamicapoint of the restriction of on S, nine images by of these
system, so that the invariance propertySi$ lost. The result  arcs are sufficient to cover the boundary of an absorbing area
of such a trick is shown in Fig.(#): the Milnor attractorAg A. We remark again that such images also include many
embedded into the diagonal is destroyed, and the whole algritical arcs internal to the absorbing area, which are clearly
sorbing area appears to be covered by a generic trajectosjsible in Fig. 3a). However, this absorbing area is not in-
starting from the white region. From a comparison of Figs.variant, because it is impossible to cover the boundaryl of
2(c) and 2d), it is evident that the portions ¢f(y) internal by the images of the sef=.4NJ, given by the arqHK)
to A indicate portions of the absorbing area where the iterconnecting the pointsl andK in Fig. 3(a), together with a
ated points are more dense. very small segment on the other branchld®_;. This is

We take the opportunity to remark that, although for theclearly shown in Fig. @): by using the arcy=.4NJ,, the
particular example considered above the relatibh J, re-  set U§=1Fk( v) cannot cover the boundargA, nor is the
ally gives thegenerating arc gdefined as the smallest arc of boundary obtained by increasing the number of iterations
Jo whose images include the boundary of an invariant atea (i.e., of images ofy).

(Ref.[22], Chap. 4, in general the generating agcmay be These arguments prove that the absorbing ateshown
strictly included in the portion of, belonging to the invari- in Fig. 3 of Ref.[19] is not invariant. This implies that such
ant area. That is, an absorbing area is not useful to characterize the transition
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which turns out to be quite useful especially at parameters’
values near the blowout bifurcations. In fact, the existence of
the invariant diagonal, on which the synchronized dynamics
occur, is due to the symmetry of the mepwith respect to
the diagonal, i.e., it commutes with the operatix,y)
—(y,X). Such symmetry property is often structurally un-
stable, i.e., it is lost after an arbitrarily small variation of
some parametefparameter mismatg¢h A consequence of
such symmetry breaking is that the invariance of the diago-
nal is lost(as well as the Milnor attractok, on it). Instead,

the existence of a minimal invariant absorbing aearound

A, is generally structurally stable, i.e., it is persistent under
small perturbations of the parameters, even if such perturba-
tions break the symmetry. In fact, the chaotic 8gCS is
often embedded into an invariant absorbing area, which is an
asymptotic attracting set in the usual Lyapuritmpologica)
sense, i.e., an invariant set for which a neighborhboelx-

ists such that any pointe U has the trajectory which satis-
fies F"(x)eU for all n>N, and d(P"(x),4)—0 asn
—oo, In order to see which is the minimal absorbing area
including the Milnor attractor, we introduce a small param-
eter mismatch and look at the trajectory obtained by taking
an initial condition on the diagonal. If the iterated points are
spread in the whole ared, then it is the minimal one.

As an example, let us consider mdp) with a=a,
=3.574 804938 732 ... (which corresponds to the ho-
r moclinic bifurcation of the logistic map which gives rise to

®) four cyclical chaotic intervals due to the merging by pairs of
eight cyclic chaotic intervaJs In this case a “window” of
negative transverse Lyapunov exponent is obtained for
—0.245<e<—0.0741. Ate=—0.085, following the proce-
dure outlined in Sec. I, we consider the two pieces of the
curve of merging preimagdsC_; denoted byg,; andg, in
Fig. 4(a), and after four iterations of the map the boundary of

FIG. 3. (a) Fora=a, ands=—1.234 the uniorJ;_,F*(CD)
of nine iterates of the gray ar¢€CD) belonging toJ, covers the
boundarydA of an absorbing areal. In this case the ar@CD) is
wider than HK)=.4NJ,. (b) The critical arcs shown here consti-
tute the setU;_,FX(HK) which, clearly, cannot cover the bound-

ary of A. . : . . . S
54 an invariant absorbing aread, is obtained, which includes

from locally to globally riddling as a consequence of a con- . S .
tact between its boundary with the basin boundary of divert® 4-cyclic chaotic Milnor attractoh located on the diag-

gent trajectoriegthe gray region in Fig. 3 which is really onal. Is iF the minimal one? Let us consider the generic non-
quite close to the absorbing aje&or this purpose only in- SYMMetric magFp,,

variant absorbing areas must be considered. Moreover, this )

requirement is still not sufficient to relate the contact bifur- Fm.(x,y)—>(fax(x)+s(y—x),fay(y)+s(x—y)). ©
cations of the invariant areas to the effects of riddling or . . .
blowout bifurcations of the Milnor attractdkg nested inside After a parameter r_msmatc_h, obtaln_ed by takira,

it. In fact, only the smallest invariant absorbing area includ-— 3'574_804 9387592 in the first equation Bf, and a,

ing the weak Milnor attractor, called thminimal invariant =3.57 in the second one, together with the same value

absorbing area should be considered. We examine this€ = — 0.085, the trajectory generated by an initial condition
problem in Sec. V. on the diagonal is included into an area, S&y which is

smaller thanA, [see Fig. 4b)]. This means that, is not the
minimal invariant absorbing area containifg; hence it
cannot be used to characterize the effects of riddling or blow-
The existence of several invariant absorbing areas, enfut bifurcations. Figure @) also suggests how to determine
bedded one into the othgand all containing the Milnor the desired area arourd : returning to our symmetric map
attractoy, is the generic occurrence in two-dimensional non-F, we choosey=RNLC_;, and repeat the procedure,
invertible maps(see, e.g., Refd.22,23). Thus a practical Wwhich now gives the minimal invariant absorbing atda.
procedure to detect the minimal invariant absorbing areas s boundarys A, is shown in Fig. 4c) [and is practically the
of primary importance. In previous sections we briefly de-same as the boundary of the area shown in Fig)]4
scribed a procedure to obtain the boundary of an invariant We observe that while the images of both the disjoint
absorbing area, but how can we ascertain that it is the minipieces of y=g,Ug,=4,;NLC_, are used to cover the
mal one? In general this is not an easy task, although somgoundaryd.A;, this is not true for the smaller are4,. In
particular(but rather boringprocedures may be given. Here this casey=.4,NLC_; is still made up of two disjoint
we prefer to suggest a simple trick that can be used withpieces, but the images of one of thed,Ng,, are always
symmetric maps, like the class of maps we are consideringnternal to the invariant absorbing ares; hence only im-

V. MINIMAL INVARIANT ABSORBING AREA
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a=a £=-1.03

1.1 a=a, &=-0.085

/gz

8

0 (a) 0 x 11
0 1.1

FIG. 5. Fora=a, and ¢=-—0.085, the natural transverse
a,~= a,=3.574804938759 a,=3.57 £=-0.085 Lyapunov exponent i\, =2.9x1072. A generic trajectory start-
ing in the white region is spread in the whole absorbing area, and
shows a typical intermittent behavior.

Another example illustrating how useful the trick sug-
gested above may be was already considered in Sec. lll
where fora=a; an invariant aread was obtained, shown in
Fig. 2(c), and a two-band Milnor attracto4,C S, was nested
inside A. From Fig. Zd), obtained after the introduction of a
small parameter mismatch, we see that the whole invariant
absorbing area appears to be covered by a generic trajectory
starting insideAg, thus giving a clear indication that the
b absorbing aread is minimal. We recall that foa=a; and
(b) g,<e<e, Whereg,=—1.1%... ande,=—-1.03%...,
the natural transverse Lyapunov exponént is negative.
Thus in the case considered in Fig. 2 the value of the param-

= a=a, &=-0085 etere is quite close to the blowout bifurcation valeg. If
the boundary of the invariant area does not come into contact
with the frontier of its basin of attraction asis increased
further, we can predict the “global” dynamic behavior after

the blowout bifurcation. In fact for a value efjust beyond
£, We expect that, since the s&f is no longer attracting on
average(it becomes a chaotic sadgllea generic trajectory
will move erratically inside the(chaotig absorbing area.
This is shown in Fig. 5, obtained with the same set of pa-
rameters as Fig. 4 in Ref19].
& After the blowout bifurcation, we do not know the “true”
(c) dynamic behavior of a generic honsynchronizing trajectory,
0 even if we know that it is bounded inside the minimal invari-
0 1 ant absorbing aread. A one-dimensional analog, drawn
from the well known behavior of the standard logistic map
x'=ax(1—x), may clarify this point. As is well known,
after the Feigenbaum point, i.e., foe43.699. . .,4), infi-
tnitely many periodic “windows” are opened by fold bifur-
cations and are closed by homoclinic bifurcatideee Ref.

FIG. 4. Fora=a, and ¢=—0.085, the natural transverse
Lyapunov exponent id, = —0.66x 10" 2. (a) Invariant absorbing
areaA, obtained by four iterations of a generating arc made up o

the two portions oL C_,, denoted byg,; andg,, and represented L : - A
by gray color.(b) A trajectory obtained with a parameter mismatch. [29], or the description given in Ref30] by the intriguing

(c) The minimal invariant absorbing are4, obtained by six itera- language of the “box-'W|th|n-a-p0x” blfurcathn .structL)re
tions of the generating arg, made up of only one branch of Even when the numerical iterations of the logistic map seem

ANLC to cover some cyclic absorbing interval bounded by critical
2 —-1- . . .
points, often called “chaotic intervals,” we are not sure if
the limit set is periodic or chaotic. In the same way, in our
ages of the other brancb, , are involved in the definition of  yo-dimensional noninvertible map, we observe a complex
dA; [see Fig. 40)]. This is an example of propertyi) stated  dynamic behavior of the generic trajectory inside the absorb-
in Sec. lll, which implies that the strict inclusion holds in Eq. ing area, so that a macroscopic dynamical effect is obtained
(8), i.e., in this example the generating &given byg;; see  which is often called “chaotic area’(or “chaos in a non
Fig. 4(c)] is strictly includedin A,NLC_j;. strict sense;” see Ref22]) although we are far from a de-
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tailed “microscopic” knowledge of the dynamic behavior

inside the absorbing area. Also in this case the occurrence of 11
saddle-node bifurcations may cause the creation of cycles of y
different periods, thus giving complex sequences of “peri-

odic windows” (or “boxes”) that are opened and closed

through a mechanism similar to the one described for the
one-dimensional logistic map. An example of a “typical”

periodic window is given in Sec. VI.

VI. ROLE OF MINIMAL INVARIANT ABSORBING
AREAS IN LOCALLY AND GLOBALLY RIDDLING

From Fig. 5, it is possible to see that the boundadyof
the absorbing area is very close to the boundary of the basin
of divergent trajectoriegor basin of infinity F. A further
increase of the parameter will cause a contact between
these two boundaries which marks the destruction of the in- y
variant absorbing area. As argued in Ref[19], if such a
contact occurs before the blowout bifurcation, i.e., for
<e<egy, it may cause a transition from local to global rid-
dling (with the basin of divergent trajectorjesn the sense
that before the contact the unstable sets that are locally re-
pelled from the unstable cycles embedded insfdeare
folded back when they reach4, whereas after the contact
they may belong to the basin of infinity; i.e., they may di-
verge(generally after a long transient inside the “ghost” of
the absorbing area destroyed at the contact

We stress again thadnly when the smallest invariant
area, including the Milnor attractor 4, has a contact wittF FIG. 6. (a) Fora=a, ande = — 1.08, a stable focus of period 4,
can we state that the basi(As) becomes globally riddled of periodic points  .yi), k=1,...,4, with (X1,y1)
with the basin of infinity. We notice, however, that this con- =(0.43® ... ,0.344L . . .), coexists with a 2-cyclic Milnor attrac-
dition is in general only sufficient, and not necessary, for aor embedded into the diagonal, characterized by a natural trans-
transition from a locally to a globally riddled basin Af. In verse Lyapunov exponemt, = —0.119. The dark-gray points be-
fact, it may occur, for example, that the baditAg) be- long to the basin of infinity, the light-gray points to the basin of the
comes globally riddled with the basin of some other attractorcycle out of the diagonal, the white points to the basin of the Milnor
existing inside the minimal invariant absorbing aréasuch  attractor. Indeed, the white region is riddled with light-gray points,
as a stable Cyc'e born via a saddle node bifurcawfore a but this is only visible by zooming in on the figure. The unstable set
contact bifurcation of the boundary of with the boundary issuing from the transversely unstable 2-cycle embedded in the
of the basin of divergent trajectories Milnor attractor (a repelling node of coordinates 0.868 77 and

For example, let us consider, again, the situation occur?-40958.... with ~transverse eigenvalues, =—1.37 and
ring for a=a, ande e (e,,8;,), i.€., after the riddling and Ny=—1.72 along the dlagon)abonverge_s to the attracting focus.
before the blowout bifurcation, when a chaotic 2-cyclic Mil- f) o a=a|1_ands=|—1.o48 the chaotic attactor .'°‘;a‘ed ou of
nor attractorAg exists in the invariant diagon& and is in- the diagonal is very close fo a contact with its basin boundary.
cluded inside a two-dimensional absorbing avédike the
one shown in Fig. @). The basin of attractiol8(A;) of the = means that the basin of attraction of the newborn attracting
Milnor attractor is at least locally riddled, as in fact the ge-cycle has “tongues” issuing from the Milnor attractor on the
neric trajectory goes away fromg transversally and may diagonal, and located around the transverse local unstable
ultimately converge tcA, or not, depending on the global manifold of the 2-cycle, as well as along the unstable sets
dynamics inside the minimal invariant absorbing arkaln issuing from all its preimages of any rank, that are densely
order to understand something of the global behavior insidélistributed alongAs. Only very few of these are visible in
A, we follow the fate of the transverse unstable set of theéFig. 6, because they become narrower and narrower as pre-
repelling 2-cycle embedded inside the chaotic set. We nuimages of higher and higher rank are considered. This is a
merically see that for ee[—1.09...-1.046...] typical situation in which the basin of the Milnor attractsy
Cles,ep], such an unstable set reaches another attrgator is riddled (i.e., globally riddled with the basin of another
classical Lyapunov attractplocated out of the diagonal, but attractor out ofS, the 4-cycle in our case. In fact, the suffi-
inside the minimal invariant absorbing argl(see Fig. 8.  cient conditions stated in Ref2] for the occurrence of
This attractor is created at=—1.0% ... via asubcritical riddled basins are fulfilled in this caséy is a chaotic set
pitchfork bifurcation, and just after this local bifurcation the with an absolutely continuous invariant measure, the natural
transverse unstable manifold of the repelling 2-cycle embedtransverse Lyapunov expondnt is negative, and at least a
ded intoA; converges to the newborn asymptotically stabletransversely unstable cycle exists, embedded ingide
node of period 4, instead of going back to the diagonal. Thisvhose unstable set belongs to the basin of another attractor.

0 (b) x 11
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Thus in this case a transition from a locally to a globally ues of riddling bifurcation and of blowout bifurcation, re-
riddled basin ofA; may be obtained independently of any spectively, and bys(® that of contact bifurcation of an
contact bifurcations of the minimal invariant absorbing areaabsorbing area with the external frontier, different scenarios
it may be simply due to a local bifurcation occurring in the are predicted depending ef® <&@ <g® or (©>¢®) |t
absorbing aread. is now clear that such conclusions are correct only (f

We remark, however, that if a similar bifurcation occursrefers to thecontact bifurcation of the minimal invariant
outsidethe minimal absorbing area, i.e., a new attractingabsorbing area, which includes the Milnor attractor, Ao-
cycle is created out of4, no transition to globally riddling cated on the invariant diagonal on which synchronized dy-
occurs, because the locally repelled trajectories starting negfamics occur, and the existence of another attractor indide
the Milnor attractor are not allowed to reach an attractorand out ofS has been exclude@sually this is not easy to be
which is out of the minimal invariant absorbing aréaf  proved.
course this causes a qualitative change in the structure of the We believe that the generic case is the one described in
basins out of4, but no changes of the dynamics insideare  the example shown in Fig. 6, i.e., one or more “windows”
obtained. of parameter intervalgfor the coupling parametgexist at

Taking up our example, the evolution of the attractor outwhich the basin ofA, is globally riddled with the basin of
of the diagonal as the parameteis increased is rather typi- some other attractor belonging to the minimal invariant ab-
cal. The stable node becomes a stable focus of period 4, thefrbing area. Instead, if some other attractor is created out of
it loses stability via a Neimark-Hopf bifurcation, after which the minimal invariant absorbing are4, we have qualitative
a more complex attractor is created around it.éAs further  changes in the structure of the basinffin the regions of
increased, it becomes a larger four-piece chaotic area, and ifse phase plane out of, but no changes can be observed
story ends when it has a contact with the boundary of it§nside.4, and in particular no changes concerning the transi-
basin[see Fig. €0), obtained just before such a contact bi- tion from a locally to globally riddled basin. Such changes
furcation]. After this contact bifurcation, callefihal bifurca-  may be observed only if, due to the variation of some param-
tion in Ref.[22], or boundary crisisn Ref.[31], the chaotic  eters, a contact between the boundarylaind the boundary
attractor out of the diagonal disappef3&] and the scenario of its basin occurs, thus giving the destructiondfand the
of locally riddling may be restored. The chaotic attractor outconsequent possibility that tongues of the basin of the other
of the diagonal becomes a chaotic repellor, however, in th@ttractor reacth.
region that was occupied by the attractor just destroyed, Analogously, a contact may occur between the boundary
other attractors may survive, such as stable cycles of vergf 4 and the boundary of the basin of divergent trajectories.
high period with a small basin with fractal structure, so thatif such a contact occurs in a situation in which a riddled
it is usually difficult to distinguish ifB(As) is locally or  basin already exists insidd, the effect of the contact bifur-
globally riddled in such a situation. To sum up, the distinc-cation will be that of a further complexity in the riddling,
tion between locally and globally riddling is a very difficult because the basin of attraction Af may become riddled

question, since many other “windows” in the parameterwith both the basin of infinity and the basin of a bounded
space may exist in which some stable cycle is created insidgttractor out ofS

the minimal invariant absorbing area via a local bifurcation
and then evolves and disappears, through a mechanism simi-
lar to the “box-within-a-box™ bifurcation structure.

We conclude this section with a remark. An interesting The work was performed under the activity of the national
statement is given in Ref19], concerning the effects of the research project “Dinamiche non lineari ed applicazioni alle
contact bifurcation that destroys an absorbing area which inscienze economiche e sociali,” MURST, Italy, and under the
cludes a Milnor attractor: denoting by® ande(® the val-  auspices of GNFM, CNR, Italy.
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