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Role of invariant and minimal absorbing areas in chaos synchronization
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In this paper the method of critical curves, a tool for the study of the global dynamical properties of
two-dimensional noninvertible maps, is applied to the study of chaos synchronization and related phenomena
of riddling, blowout, and on-off intermittency. A general procedure is suggested in order to obtain the bound-
ary of a particular two-dimensional compact trapping region, calledabsorbing area, containing the one-
dimensional chaotic set on which synchronized dynamics occur. The main purpose of the paper is to show that
only invariant and minimal absorbing areas are useful to characterize the global dynamical behavior of the
dynamical system when a Milnor attractor with locally riddled basin or a chaotic saddle exists, and may
strongly influence the effects of riddling and blowout bifurcations. Some examples are given for a system of
two coupled logistic maps, and some practical methods and numerical tricks are suggested in order to ascertain
the properties of invariance and minimality of an absorbing area. Some general considerations are given
concerning the transition from locally riddled to globally riddled basins, and the role of the absorbing area in
the occurrence of such transition is discussed.@S1063-651X~98!11611-2#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

Dynamical systems with an invariant submanifold
lower dimensionality than the total phase space have c
manded increasing interest in the scientific community
recent years. Attracters in Milnor’s sense~Ref. @13#!, not
stable in the Lyapunov sense, appear quite naturally in
context, together with striking phenomena like on-off inte
mittency and riddled basins, and also interesting kinds
bifurcations like riddling ~or bubbling! bifurcations and
blowout bifurcations~see, e.g., Refs.@1–5#!.

In this paper we study some global properties of tw
dimensional discrete dynamical systems, defined by the
eration of a map of the form

~x8,y8!5T~x,y!5„T1~x,y!,T2~x,y!… ~1!

that possesses an invariant one-dimensional submanifoS.
The very particular feature of the invariance of a subma
fold becomes generic if the mapT has some symmetry prop
erty, a situation that often occurs in applications. The traj
tories embedded intoS, whose dynamics are governed by t
one dimensional restriction ofT to S, say f 5TuS , are called
synchronized trajectories. The existence of such one
dimensional dynamics embedded into the two-dimensio
phase space ofT raises the question, recently investigated
many authors, of whether an attractorAs of the one-
dimensional restrictionf is also an attractor of the two
dimensional mapT, and in what sense~see, e.g., Ref.@1# and
references therein!.

Of course, an attractorAs of the restrictionf is stable with
respect to perturbations alongS, so an answer to the questio
addressed above can be given through a study of the sta
of As with respect to perturbations transverse toS~transverse
stability!. Results on transverse stability have been obtai
PRE 581063-651X/98/58~5!/5710~10!/$15.00
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mainly for the case in which the dynamics restricted to
invariant submanifold are chaotic, so that the question
transverse stability is related to the phenomenon ofchaos
synchronization, i.e., trajectories that start outsideS and are
attracted toward a one-dimensional chaotic attractorAs#S
~see the Refs.@6,7# or, for more recent results, Refs.@4,5#!. A
typical example of chaos synchronization, naturally met
many applications, is obtained by coupling two identic
one-dimensional chaotic maps~see, e.g., Refs.@8–12#!.

In the recent literature, stability statements about ch
synchronization have been given in terms of thetransverse
Lyapunov exponents. The key property is that a chaotic a
tractorAs of the restrictionf 5TuS includes within itself in-
finitely many periodic orbits which are unstable in the dire
tion alongS, and for the two-dimensional dynamical syste
the invariant setAs is asymptotically~Lyapunov! stable, i.e.,
attracting in the usual topological sense, if all the cyc
embedded in it are transversely stable~or, equivalently, if the
largest transverse Lyapunov exponent is negative!. However,
it may occur that some cycles embedded into the chaotic
As become transversely repelling even if thenatural trans-
verse Lyapunov exponentL' is still negative, due to the
presence of many other transversely attracting orbits emb
ded insideAs ~by the term ‘‘natural Lyapunov exponent,’
we mean the Lyapunov exponent associated to the na
measure, i.e., computed for a typical trajectory on the cha
attractorAs). In this caseAs is no longer a Lyapunov attrac
tor, i.e., a two-dimensional neighborhoodU of As exists such
that in any neighborhoodV,U there are points~really a set
of points of positive measure! that exitU after a finite num-
ber of iterations, but it continues to be attracting ‘‘on th
average’’ or, more precisely, it is an attractor in Milnor sen
~see Refs.@13,4#!, which means that it attracts a positiv
~Lebesgue! measure set of points of the two-dimension
phase space. The transition from asymptotic s
5710 © 1998 The American Physical Society
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bility to attractivity only in Milnor sense is denoted as
riddling bifurcation in Ref. @14# ~or abubbling bifurcationin
Refs.@11,15,16#.

Even if the occurrence of such bifurcations is detec
through the study of the transverse Lyapunov expone
their effects depend on the action of the nonlinearities
from S, that is, on the global properties of the dynamic
system. In fact, after the riddling bifurcation two possib
scenarios can be observed according to the fate of the tra
tories that are locally repelled along~or near! the local un-
stable manifolds of the transversely repelling cycles:

SituationL: they can be reinjected towardsSby the action
of the nonlinearities acting far fromS, so that the dynamics
of such trajectories are characterized by some bursts far f
S before synchronizing on it~a very long sequence of suc
bursts, which can be observed whenL' is close to zero, was
called on-off intermittency in Ref.@3#!.

SituationG: they may belong to the basin of another a
tractor, in which case the phenomenon of riddled basins~@2#!
is obtained.

Some authors calllocal riddling situationL and, by con-
trast,global riddling situationG ~see Refs.@4,17–19#!.

When the natural transverse Lyapunov exponentL' also
becomes positive, due to the fact that the transversely
stable periodic orbits embedded intoAs have a greater
weight with respect to the transversely attracting ones~see
Ref. @5#! a blowout bifurcationoccurs, after whichAs is no
longer a Milnor attractor~it becomes achaotic saddle@20#;
also see Ref.@1#!. Also the macroscopic effect of a blowou
bifurcation is strongly influenced by the behavior of the d
namical system far from the invariant submanifoldS: the
trajectories starting close to the chaotic saddle may be
tracted by some attracting set far fromS ~that may also be a
infinity, i.e., diverging trajectories! or may remain inside
some two-dimensional compact set located near or aro
the chaotic saddleAs . As noted by many authors~see, e.g.,
Refs. @3,11,4,10#!, the study of transverse Lyapunov exp
nents, which is based on the linear approximation of the m
T aroundS, says nothing about the fate of the locally repell
trajectories, and the occurrence of the different scenarios
scribed above is determined by the global properties of
map. When Eq.~1! is a noninvertible map, as generally o
curs in problems of chaos synchronization, the global
namical properties can be usefully described by the met
of critical curves~see Refs.@21–23#!, and the reinjection of
the locally repelled trajectories can be described in term
their folding action.@See, e.g., Refs.@22# or @24# for a de-
scription of the geometric properties of a noninvertible m
related to the folding~or foliation! of its phase space.# This
idea was recently proposed in Ref.@25# for the study of
symmetric maps arising in game theory, and in@26# for the
study of the effects of small asymmetries due to parame
mismatches. In these two papers the geometric propertie
the critical curves were used to obtain the boundary o
compact trapping region, called theabsorbing areafollow-
ing Ref. @22#, inside which intermittency and blowout phe
nomena are confined. In other words, the critical curves
used to bound a compact region of the phase plane that
as a trapping bounded vessel, inside which the trajecto
starting nearS are confined.
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In a recent paper@19#, the notion of absorbing area wa
introduced in the physical literature for the study of a syst
of coupled chaotic oscillators, and the authors suggested
the method of critical curves may be used to characterize
global effects of riddling and blowout bifurcations, and th
contacts of an absorbing area with basin boundaries m
reveal a transition from locally to globally riddling.

The methods used Refs.@26,25,19# are fairly general in
the study of the problems related to chaotic synchroniza
in symmetrically coupled chaotic oscillators. In fact, su
systems are generally represented by two-dimensional n
invertible maps, since in this case the restriction of the m
to the one-dimensional invariant submanifold of synch
nized trajectories may be chaotic. So the critical curves
powerful tool for the study of global dynamics and bifurc
tions in noninvertible maps, may be used.

An important question, which was not considered in R
@19#, is that an absorbing areaA, characterized by the prop
erty T(A)#A, may be invariant, i.e., exactly mapped in
itself, T(A)5A, or strictly mapped into itself,T(A),A.
The purpose of the present paper is to show that only
delimitation of aninvariant absorbing areais important in
order to characterize the global properties which influen
the qualitative effects of riddling or blowout bifurcation
Moreover, several invariant absorbing areas may often
observed, one embedded into the other. In these case
minimal invariant absorbing areashould be used, where
minimal means the smallest one including the Milnor attra
tor on which synchronized dynamics occur.

We give some examples, by using the same system of
coupled one-dimensional maps considered in Ref.@19#, in
order to illustrate how the boundary of an invariant abso
ing area can be obtained by segments of critical curves. T
we address the questions of invariance and minimality pr
erties of an absorbing area, and we show that if either
invariance condition or that of minimality is relaxed, then t
absorbing area cannot be used for the purposes stated a
The determination of the minimal invariant absorbing area
not an easy task. So, in order to overcome these difficult
in Sec. V we suggest the trick of a ‘‘parameter mismatch
which turns to be useful in many situations.

Some observations on the transition from local to glo
riddling are given in Sec. VI. In the recent literature th
transition from locally to globally riddling has been consi
ered as a particular bifurcation involving local-global d
namics of the map. Here we argue, by an example, that s
transition may occur several times between the riddling a
blowout bifurcations, and that the concept of absorbing a
may give some help in order to understand such phenom

II. CRITICAL CURVES AND THE CONSTRUCTION
OF AN ABSORBING AREA

A two-dimensional mapT:(x,y)→(x8,y8), defined by
Eq. ~1!, is said to be noninvertible if the rank-1 preimag
(x,y)5T21(x8,y8) of a point (x8,y8)PR2, obtained by
solving system~1! with respect tox andy, may be more than
one or may not exist. In this case, the plane can be su
vided into regionsZk , k>0, whose points havek distinct
rank-1 preimages. Generally, as the point (x8,y8) varies in
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the planeR2, pairs of preimages appear or disappear a
crosses the boundaries separating different regions; h
such boundaries are characterized by the presence of at
two coincident~merging! preimages. This leads to the de
nition of the critical curves, one of the distinguishing fe
tures of noninvertible maps. Following the notations of Re
@21–23#, the critical set LC ~from the French ‘‘ligne cri-
tique’’! is defined as the locus of points having two, or mo
coincident rank-1 preimages, located on a set~set of merging
preimages! calledLC21 . LC is the two-dimensional gener
alization of the notion of critical value~when it is a local
minimum or maximum value! of a one-dimensional map
~this terminology and notation originate from the notion
critical points as it is used in the classical works of Julia a
Fatou!, andLC21 is the generalization of the notion of th
critical point ~when it is a local extremum point!. Arcs ofLC
separate regions of the plane characterized by a diffe
number of real rank-1 preimages~see Refs.@21–23#!. We
also recall that the critical sets of rankk are the images o
rank k of LC21 denoted by LCk215Tk(LC21)
5Tk21(LC), LC0 beingLC.

Points of LC21 in which the map is differentiable ar
necessarily points where the Jacobian determinant vanis
in fact in any neighborhood of a point ofLC21 there are at
least two distinct points which are mapped byT in the same
point ~nearLC!; hence the map is not locally invertible i
these points. This implies, for a differentiable mapT, that

LC21#J05$~x,y!PR2udet DT~x,y!50%. ~2!

The condition of a vanishing Jacobian is necessary
differentiable maps, but not sufficient to detect a critic
point of LC21 as defined above@i.e., the inclusion in Eq.~2!
may be strict#. The notion of critical curve was introduced b
Gumowski and Mira in connection with the problem of no
connected basins and basin bifurcations~see Ref.@21#!. Seg-
ments of critical curves can be used in order to define tr
ping regions of the phase plane, called absorbing areas
absorbing areaA is a bounded region of the plane who
boundary is given by critical curve segments~segments of
the critical curveLC and its images! such that a neighbor
hoodU.A exists whose point entersA after a finite number
of iterations and then never escape it, sinceT(A)#A, i.e.,A
is trapping~see Ref.@22#, Chap. 4 for more details!

Indeed, in noninvertible maps, boundaries of trapping
gions can also be obtained by the union of segments of c
cal curves and portions of unstable sets of saddle cycles,
in this case we have so-calledabsorbing areas of mixed typ
~see Ref.@22#!. Here we do not enter into such technic
details, as in the examples given in this paper only stand
absorbing areas~i.e., completely bounded by critical arcs!
are used. However, the arguments of the present pape
main substantially unchanged if absorbing areas of mi
type are encountered instead of standard absorbing area

Following Refs.@22# or @23#, a practical procedure can b
outlined in order to obtain the boundary of an absorbing a
~although it is difficult to give a general method!. Starting
from a portion ofLC21 , approximately taken in the regio
occupied by the area of interest, its images byT of increasing
rank are computed until a closed region is obtained. W
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such a region is mapped into itself, then it is an absorb
areaA. The length of the initial segment is to be taken,
general, by a trial and error method, although several s
gestions are given in the books referred to above. Once
absorbing areaA is found, in order to see if it is invariant o
not, the same procedure must be repeated by taking only
portion

g5AùLC21 ~3!

as the starting segment. Then one of the following two ca
occurs:

Case I: The union ofm iterates ofg ~for a suitablem!
covers the whole boundary ofA, in which caseA is an
invariant absorbing area, and

]A, ø
k51

m

T k~g!. ~4!

Case II: No naturalm exists such thatø i 51
m Ti(g) covers

the whole boundary ofA; in which caseA is not invariant
but strictly mapped into itself. An invariant absorbing area
obtained byùn.0Tn(A) ~and may be obtained by a finit
number of images ofA!.

The distinction between the two cases is fundamenta
order to consider a contact between the boundary of the
sorbing area and some other invariant set~like the boundary
of a basin! which generally causes changes for the fate of
trajectories which are locally repelled from the Milnor attra
tor. For this purposeonly invariant absorbing areas are use
ful, because boundary contacts of noninvariant ones ge
ally have no consequences on the invariant sets which
strictly included inside the absorbing areas.

In order to illustrate these concepts let us consider
two-dimensional mapF, proposed in Ref.@19#, given by a
system of coupled logistic maps:

F:~x,y!→„f a~x!1«~y2x!, f a~y!1«~x2y!…, ~5!

wheref a(x)5ax(12x) is the standard logistic map, and« is
the coupling parameter. We refer to this map only to give
example, but the arguments and the constructions given
low are fairly general.

Map ~5! is continuously differentiable in the whole plan
R2, and in this case we haveLC215J0 @andLC5F(J0)],
whereJ0 is the locus of points in which the Jacobian va
ishes:

J05$~x,y!PR2udet„DF~x,y!…50%.

The equation det(DF)50 defines an equilateral hyperbola
the plane~x,y!; henceLC21 is formed by two branches, de
noted byLC21

(a) and LC21
(b) in Fig. 1. This also implies tha

LC is the union of two branches, denoted byLC(a)

5F(LC21
(a) ) and LC(b)5F(LC21

(b) ). BranchLC(a) separates
regionZ0 , whose points have no preimages, from regionZ2 ,
whose points have two distinct rank-1 preimages, andLC(b)

separates regionZ2 from regionZ4 , whose points have fou
distinct rank-1 preimages. Notice thatLC21

(a) intersectsS in
the critical point of the restrictionf a , and, consequently
LC(a) intersects S in the point where the restriction
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f a attains its maximum value. Instead the image of the ot
intersection ofLC21 andS is a cusp point ofLC.

Following Ref.@19#, we now consider fixed values of th
parametera such that a chaotic attractorAs of the logistic
map f a exists, with an absolutely continuous invariant me
sure onAs , and we study the transverse stability ofAs,S as
the coupling parameter« varies. We remark that« is a nor-
mal parameter, that is, it influences the stability in the tran
verse directions but it does not affect the dynamics in
invariant diagonalS. Suitable values of the parametera, at
which chaotic intervals for the logistic map exist, area5ai

for i 50,1,2, . . . , such that, at each valueai the first ho-
moclinic bifurcation of a cycle of period 2i occurs, causing
the reunion of 2i 11 chaotic intervals into 2i chaotic intervals,
merging in the repelling periodic points of the cycle of p
riod 2i . The 2i cyclic chaotic intervals give the setAs on S.

For example, fora5a053.678 573 510 428 . . . , As is a
one-piece chaotic interval, due to the merging of two chao
intervals into the repelling fixed point different from the or
gin, which undergoes its first homoclinic bifurcation. In th
examples given below we shall also considera5a1
53.592 572 184 106 97 . . . , atwhich As is a two-band cha-
otic set, becausea1 is the parameter value at which th
period-2 cycle of the logistic map undergoes the first h
moclinic bifurcation, and two cyclic chaotic intervals are o
tained by the merging of 4-cyclic chaotic intervals.

III. INVARIANT ABSORBING AREA

Map ~5!, with a5a1 , turns out to be quite useful to giv
a first example of invariant absorbing area, and will also g
us the opportunity to comment, in Sec. VI, on some bifur
tions occurring inside it. As stated in Ref.@27#, for a5a1 the
two-band chaotic setAs,S is an asymptotic~Lyapunov! at-
tractor of the mapF for «1,«,«2 , with «1521.464 . . .
and «2521.156 . . . ~denoted as interval of strong tran
verse stability in Ref.@27#!. At «5«2 a riddling bifurcation
occurs, due to the loss of transverse stability of a cycle
period 2 embedded insideAs and, as the coupling paramet
« is further increased, at«5«b , with «b521.0385 . . . , a
blowout bifurcation occurs, i.e., the natural transve
Lyapunov exponent

FIG. 1. ~a! The set of merging preimagesLC21 defined, for
map ~5!, as the locusJ0 of the vanishing Jacobian.~b! Critical
curvesLC5F(LC21). The regionsZk represent the set of point
havingk distinct preimages. The points ofLC(a) have two preim-
ages, merging onLC21

(a) the points ofLC(b) have four preimages
two of which merge onLC21

(b) .
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N→`

(
n51

N

lnu222axn22«u, ~6!

where$xn% is a generic trajectory onAs , becomes positive.
Now let us consider the casea5a1 , with the coupling

parameter«521.04. From the arguments given above, i
such a situationAs is a Milnor ~not asymptotic! attractor. A
typical trajectory starting near it synchronizes after a fe
bursts out of it. This is illustrated in Fig. 2~a!, where one of
such trajectories is shown. The same trajectory is given
Fig. 2~b!, where the early 2000 iterates are not represente
The comparison of these two figures suggests that we ha
chaotic synchronization after some bursts away from the d
agonal, during the transient, represented by the points out
the diagonal in Fig. 2~a!. Numerical explorations suggest tha
a similar behavior is obtained for the generic trajectory sta
ing from the white region of Fig. 2~b!, whereas the trajecto-
ries starting from the gray region go to infinity. Figure 2~a!
suggests that the intermittency phenomena observed dur

FIG. 2. Fora5a1 and«521.04, a chaotic 2-cyclic Milnor~not
topological! attractor is embedded into the invariant diagonal. Fo
this set of parameters the natural transverse Lyapunov exponen
L'520.6431022. The gray region represents the basin of infinity
~divergent trajectories!. ~a! A generic trajectory starting in the white
region synchronizes to the diagonal after several bursts out of
showing a typical intermittent behavior.~b! The same trajectory as
that shown in~a! is represented without the early 2000 iterates.~c!
An invariant absorbing areaA around the Milnor attractor is ob-
tained by iterating the generating arc, g5AùLC21

5g1øg2øg3 , given by the union of three disjoint pieces ofJ0 ,
represented by gray arcs. Four iterates ofg, denoted byLk21

5Fk(g), k51, . . . ,4, arerepresented by black curves.~d! A typi-
cal trajectory starting from the diagonal after a parameter mismat
has been introduced, obtained withax5a1 in the first equation of
Eqs.~9!, anday53.5926 in the second one.
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the transient part of the trajectories are confined insid
compact region of the phase plane, since the trajectories
are locally repelled are folded back toward the diagonal
the global dynamics of the map. In this case an absorb
areaA, inside which the Milnor attractorAs is included, can
be easily obtained. Let us consider the setg5AùLC21 ,
~LC215J0 for the mapF!. It is made up of three disjoin
arcs, sayg5g1øg2øg3 @see Fig. 2~c!#, and its first four
images byF are necessary to cover the boundary]A of the
invariant absorbing area, that is, case I of the procedure
scribed in Sec. II occurs. Moreover, these four images,
noted byLk215Fk(g), k51, . . . ,4, inFig. 2~c!, necessarily
include several arcs internal to the invariant areaA. That is,
the boundary ofA is strictly included in the union of the
images:]A,øk51

4 Fk(g).
We remark that the same procedure has been followe

Ref. @19#, where in order to define the boundary]A of an
absorbing areaA, the portion ofJ0 belonging toA, here
calledg, is considered, and a finite number of imagesFk(g),
k51, . . . ,m, is taken in order to obtain the whole bounda
of A. However, Relation~6! given in Ref. @19#, i.e., ]A
5øk51

m Fk(g), is not correct and, evidently, the inner po
tions of the critical curves have been canceled to obtain
4 in Ref. @19#.

The images of the critical arcs which are mapped ins
the area play a particular role, because these curves repr
the ‘‘foldings’’ of the Riemann plane under forward itera
tions of the map, and this is the reason why these in
curves often denote the portions of the region which
more frequently visited by a generic trajectory inside
~many examples that support this statement are given in
literature on noninvertible maps; see, e.g., Ref.@22#!.

In the situation shown in Fig. 2, all the trajectories starti
inside such an absorbing area are necessarily trapped in
it, and those starting from a neighborhood ofA enterA after
a finite number of iterations and then never escape. The
sorbing area behaves as a global vessel for all the traject
which are repelled away from a local neighborhood of
chaotic saddleAs .

However, just a few bursts are visible due to the nega
ity of the natural Lyapunov exponent, which implies that t
trajectories synchronize to the Milnor attractorAs,S. As
will be discussed in Sec. V, a simple method that can
followed to ascertain the existence and shape of an invar
absorbing area consists in the introduction of a small par
eter mismatch which breaks the symmetry of the dynam
system, so that the invariance property ofS is lost. The result
of such a trick is shown in Fig. 2~d!: the Milnor attractorAs
embedded into the diagonal is destroyed, and the whole
sorbing area appears to be covered by a generic trajec
starting from the white region. From a comparison of Fi
2~c! and 2~d!, it is evident that the portions ofFk(g) internal
to A indicate portions of the absorbing area where the i
ated points are more dense.

We take the opportunity to remark that, although for t
particular example considered above the relationAùJ0 re-
ally gives thegenerating arc g, defined as the smallest arc o
J0 whose images include the boundary of an invariant areA
~Ref. @22#, Chap. 4!, in general the generating arcg may be
strictly included in the portion ofJ0 belonging to the invari-
ant area. That is,
a
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g#AùJ0 , ~7!

and the strict inclusion in Eq.~7! may occur for two reasons
~i! The locusJ0 of the vanishing Jacobian, andAùJ0 as

well, may include a set of points which do not belong to t
critical set of rank 0 in the Julia-Fatou sense, denoted
LC21 , to which g must belong. Really Eq.~7! is not the
more appropriate notation for the generating arcg, which
should be

g#AùLC21 . ~8!

~ii ! Even if the setAùJ0 is entirely made up of critical
segments belonging toLC21 , it may occur that only a por-
tion of this set is involved in the definition of the bounda
of A because the other portions have images that are alw
internal toA ~an example is given in Ref.@28#, and another
example is given below, in Sec. V!. In other words, the in-
clusion given in Eq.~8! also may be strict.

To end this section, we remark that the shape of the
sorbing areaA around the Milnor attractor gives us clea
information about the consequences of the blowout bifur
tion that occurs as the coupling parameter is increased
yond «5«b . In fact, for values of« just after the blowout
bifurcation, we expect that, the setAs no longer being at-
tracting in the average~it becomes a chaotic saddle!, a ge-
neric trajectory will move erratically inside the whole a
sorbing area. However, in order to make such a predic
we need to know that two important properties hold: t
invariance and theminimality of the absorbing areaA. In
Sec. IV we give an example of an absorbing area which
not invariant, and in Sec. V we give an example of an
variant absorbing area which is not minimal. In both case
contact bifurcation of their boundary is not useful to chara
terize the different scenarios related to riddling or blowo
bifurcations of the chaotic setAs .

IV. NONINVARIANT ABSORBING AREA

To explain the construction of the boundary of an abso
ing area better, we consider another example, the one g
in Ref. @19#, to construct an absorbing area fora5a0 and
«521.234. For this set of parameters, considering an ar
LC21 , for example the arc~CD! in Fig. 3~a!, and a small
portion of the other branch ofLC21 including the critical
point of the restriction ofF on S, nine images byF of these
arcs are sufficient to cover the boundary of an absorbing a
A. We remark again that such images also include m
critical arcs internal to the absorbing area, which are clea
visible in Fig. 3~a!. However, this absorbing area is not in
variant, because it is impossible to cover the boundary oA
by the images of the setg5AùJ0 given by the arc~HK!
connecting the pointsH andK in Fig. 3~a!, together with a
very small segment on the other branch ofLC21 . This is
clearly shown in Fig. 3~b!: by using the arcg5AùJ0 , the
set øk51

9 Fk(g) cannot cover the boundary]A, nor is the
boundary obtained by increasing the number of iteratio
~i.e., of images ofg!.

These arguments prove that the absorbing areaA shown
in Fig. 3 of Ref.@19# is not invariant. This implies that suc
an absorbing area is not useful to characterize the trans
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from locally to globally riddling as a consequence of a co
tact between its boundary with the basin boundary of div
gent trajectories~the gray region in Fig. 3 which is really
quite close to the absorbing area!. For this purpose only in-
variant absorbing areas must be considered. Moreover,
requirement is still not sufficient to relate the contact bifu
cations of the invariant areas to the effects of riddling
blowout bifurcations of the Milnor attractorAs nested inside
it. In fact, only the smallest invariant absorbing area inclu
ing the weak Milnor attractor, called theminimal invariant
absorbing area, should be considered. We examine th
problem in Sec. V.

V. MINIMAL INVARIANT ABSORBING AREA

The existence of several invariant absorbing areas,
bedded one into the other~and all containing the Milnor
attractor!, is the generic occurrence in two-dimensional no
invertible maps~see, e.g., Refs.@22,23#!. Thus a practical
procedure to detect the minimal invariant absorbing area
of primary importance. In previous sections we briefly d
scribed a procedure to obtain the boundary of an invar
absorbing area, but how can we ascertain that it is the m
mal one? In general this is not an easy task, although s
particular~but rather boring! procedures may be given. Her
we prefer to suggest a simple trick that can be used w
symmetric maps, like the class of maps we are consider

FIG. 3. ~a! For a5a0 and«521.234 the unionøk51
9 Fk(CD)

of nine iterates of the gray arc~CD! belonging toJ0 covers the
boundary]A of an absorbing areaA. In this case the arc~CD! is
wider than (HK)5AùJ0 . ~b! The critical arcs shown here const
tute the setøk51

9 Fk(HK) which, clearly, cannot cover the bound
ary ofA.
-
r-
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which turns out to be quite useful especially at paramete
values near the blowout bifurcations. In fact, the existence
the invariant diagonal, on which the synchronized dynam
occur, is due to the symmetry of the mapF with respect to
the diagonal, i.e., it commutes with the operatorS:(x,y)
→(y,x). Such symmetry property is often structurally u
stable, i.e., it is lost after an arbitrarily small variation
some parameter~parameter mismatch!. A consequence of
such symmetry breaking is that the invariance of the dia
nal is lost~as well as the Milnor attractorAs on it!. Instead,
the existence of a minimal invariant absorbing areaA around
As is generally structurally stable, i.e., it is persistent und
small perturbations of the parameters, even if such pertu
tions break the symmetry. In fact, the chaotic setAs,S is
often embedded into an invariant absorbing area, which is
asymptotic attracting set in the usual Lyapunov~topological!
sense, i.e., an invariant set for which a neighborhoodU ex-
ists such that any pointxPU has the trajectory which satis
fies Fn(x)PU for all n.Nx and d(Pn(x),A)→0 as n
→`. In order to see which is the minimal absorbing ar
including the Milnor attractor, we introduce a small param
eter mismatch and look at the trajectory obtained by tak
an initial condition on the diagonal. If the iterated points a
spread in the whole areaA, then it is the minimal one.

As an example, let us consider map~5! with a5a2
53.574 804 938 759 2 . . . ~which corresponds to the ho
moclinic bifurcation of the logistic map which gives rise
four cyclical chaotic intervals due to the merging by pairs
eight cyclic chaotic intervals!. In this case a ‘‘window’’ of
negative transverse Lyapunov exponent is obtained
20.245,«,20.0741. At«520.085, following the proce-
dure outlined in Sec. II, we consider the two pieces of
curve of merging preimagesLC21 denoted byg1 andg2 in
Fig. 4~a!, and after four iterations of the map the boundary
an invariant absorbing areaA1 is obtained, which includes
the 4-cyclic chaotic Milnor attractorAs located on the diag-
onal. Is it the minimal one? Let us consider the generic n
symmetric mapFm ,

Fm :~x,y!→„f ax
~x!1«~y2x!, f ay

~y!1«~x2y!…. ~9!

After a parameter mismatch, obtained by taking,ax
53.574 804 938 759 2 in the first equation ofFm and ay
53.57 in the second one, together with the same va
«520.085, the trajectory generated by an initial conditi
on the diagonal is included into an area, sayR, which is
smaller thanA1 @see Fig. 4~b!#. This means thatA1 is not the
minimal invariant absorbing area containingAs ; hence it
cannot be used to characterize the effects of riddling or blo
out bifurcations. Figure 4~b! also suggests how to determin
the desired area aroundAs : returning to our symmetric map
F, we chooseg5RùLC21 , and repeat the procedure
which now gives the minimal invariant absorbing areaA2 .
Its boundary]A2 is shown in Fig. 4~c! @and is practically the
same as the boundary of the area shown in Fig. 4~b!#.

We observe that while the images of both the disjo
pieces of g5g1øg25A1ùLC21 are used to cover the
boundary]A1 , this is not true for the smaller areaA2 . In
this caseg5A2ùLC21 is still made up of two disjoint
pieces, but the images of one of them,A2ùg2 , are always
internal to the invariant absorbing areaA2 ; hence only im-
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ages of the other branch,g1 , are involved in the definition of
]A2 @see Fig. 4~c!#. This is an example of property~ii ! stated
in Sec. III, which implies that the strict inclusion holds in E
~8!, i.e., in this example the generating arc@given byg1 ; see
Fig. 4~c!# is strictly includedin A2ùLC21 .

FIG. 4. For a5a2 and «520.085, the natural transvers
Lyapunov exponent isL'520.6631022. ~a! Invariant absorbing
areaA1 obtained by four iterations of a generating arc made up
the two portions ofLC21 , denoted byg1 andg2 , and represented
by gray color.~b! A trajectory obtained with a parameter mismatc
~c! The minimal invariant absorbing areaA2 obtained by six itera-
tions of the generating arcg1 made up of only one branch o
A2ùLC21 .
Another example illustrating how useful the trick su
gested above may be was already considered in Sec
where fora5a1 an invariant areaA was obtained, shown in
Fig. 2~c!, and a two-band Milnor attractorAs,S, was nested
insideA. From Fig. 2~d!, obtained after the introduction of
small parameter mismatch, we see that the whole invar
absorbing area appears to be covered by a generic traje
starting insideAs , thus giving a clear indication that th
absorbing areaA is minimal. We recall that fora5a1 and
«2,«,«b where «2521.156 . . . and«b521.0385 . . . ,
the natural transverse Lyapunov exponentL' is negative.
Thus in the case considered in Fig. 2 the value of the par
eter« is quite close to the blowout bifurcation value«b . If
the boundary of the invariant area does not come into con
with the frontier of its basin of attraction as« is increased
further, we can predict the ‘‘global’’ dynamic behavior afte
the blowout bifurcation. In fact for a value of« just beyond
«b we expect that, since the setAs is no longer attracting on
average~it becomes a chaotic saddle!, a generic trajectory
will move erratically inside the~chaotic! absorbing area.
This is shown in Fig. 5, obtained with the same set of p
rameters as Fig. 4 in Ref.@19#.

After the blowout bifurcation, we do not know the ‘‘true’
dynamic behavior of a generic nonsynchronizing trajecto
even if we know that it is bounded inside the minimal inva
ant absorbing areaA. A one-dimensional analog, draw
from the well known behavior of the standard logistic m
x85ax(12x), may clarify this point. As is well known,
after the Feigenbaum point, i.e., for aP(3.699, . . . ,4), infi-
nitely many periodic ‘‘windows’’ are opened by fold bifur
cations and are closed by homoclinic bifurcations~see Ref.
@29#, or the description given in Ref.@30# by the intriguing
language of the ‘‘box-within-a-box’’ bifurcation structure!.
Even when the numerical iterations of the logistic map se
to cover some cyclic absorbing interval bounded by criti
points, often called ‘‘chaotic intervals,’’ we are not sure
the limit set is periodic or chaotic. In the same way, in o
two-dimensional noninvertible map, we observe a comp
dynamic behavior of the generic trajectory inside the abso
ing area, so that a macroscopic dynamical effect is obtai
which is often called ‘‘chaotic area’’~or ‘‘chaos in a non
strict sense;’’ see Ref.@22#! although we are far from a de

f

FIG. 5. For a5a2 and «520.085, the natural transvers
Lyapunov exponent isL'52.931022. A generic trajectory start-
ing in the white region is spread in the whole absorbing area,
shows a typical intermittent behavior.
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tailed ‘‘microscopic’’ knowledge of the dynamic behavio
inside the absorbing area. Also in this case the occurrenc
saddle-node bifurcations may cause the creation of cycle
different periods, thus giving complex sequences of ‘‘pe
odic windows’’ ~or ‘‘boxes’’! that are opened and close
through a mechanism similar to the one described for
one-dimensional logistic map. An example of a ‘‘typica
periodic window is given in Sec. VI.

VI. ROLE OF MINIMAL INVARIANT ABSORBING
AREAS IN LOCALLY AND GLOBALLY RIDDLING

From Fig. 5, it is possible to see that the boundary]A of
the absorbing area is very close to the boundary of the b
of divergent trajectories~or basin of infinity! F. A further
increase of the parameter« will cause a contact betwee
these two boundaries which marks the destruction of the
variant absorbing areaA. As argued in Ref.@19#, if such a
contact occurs before the blowout bifurcation, i.e., for«2
,«,«b , it may cause a transition from local to global rid
dling ~with the basin of divergent trajectories!, in the sense
that before the contact the unstable sets that are locally
pelled from the unstable cycles embedded insideAs are
folded back when they reach]A, whereas after the contac
they may belong to the basin of infinity; i.e., they may d
verge~generally after a long transient inside the ‘‘ghost’’
the absorbing area destroyed at the contact!.

We stress again thatonly when the smallest invarian
area, including the Milnor attractor As , has a contact withF
can we state that the basinB(As) becomes globally riddled
with the basin of infinity. We notice, however, that this co
dition is in general only sufficient, and not necessary, fo
transition from a locally to a globally riddled basin ofAs . In
fact, it may occur, for example, that the basinB(As) be-
comes globally riddled with the basin of some other attrac
existing inside the minimal invariant absorbing areaA, such
as a stable cycle born via a saddle node bifurcation,before a
contact bifurcation of the boundary ofA with the boundary
of the basin of divergent trajectories.

For example, let us consider, again, the situation occ
ring for a5a1 and «P(«2 ,«b), i.e., after the riddling and
before the blowout bifurcation, when a chaotic 2-cyclic M
nor attractorAs exists in the invariant diagonalS and is in-
cluded inside a two-dimensional absorbing areaA like the
one shown in Fig. 2~c!. The basin of attractionB(As) of the
Milnor attractor is at least locally riddled, as in fact the g
neric trajectory goes away fromAs transversally and may
ultimately converge toAs or not, depending on the globa
dynamics inside the minimal invariant absorbing areaA. In
order to understand something of the global behavior ins
A, we follow the fate of the transverse unstable set of
repelling 2-cycle embedded inside the chaotic set. We
merically see that for «P@21.09 . . . ,21.046 . . . #
,@«2 ,«b#, such an unstable set reaches another attracto~a
classical Lyapunov attractor! located out of the diagonal, bu
inside the minimal invariant absorbing areaA ~see Fig. 6!.
This attractor is created at«521.096 . . . via asubcritical
pitchfork bifurcation, and just after this local bifurcation th
transverse unstable manifold of the repelling 2-cycle emb
ded intoAs converges to the newborn asymptotically sta
node of period 4, instead of going back to the diagonal. T
of
of
-

e

in

-

e-

a

r

r-

-

e
e
u-

d-

is

means that the basin of attraction of the newborn attrac
cycle has ‘‘tongues’’ issuing from the Milnor attractor on th
diagonal, and located around the transverse local unst
manifold of the 2-cycle, as well as along the unstable s
issuing from all its preimages of any rank, that are dens
distributed alongAs . Only very few of these are visible in
Fig. 6, because they become narrower and narrower as
images of higher and higher rank are considered. This
typical situation in which the basin of the Milnor attractorAs
is riddled ~i.e., globally riddled! with the basin of another
attractor out ofS, the 4-cycle in our case. In fact, the suffi
cient conditions stated in Ref.@2# for the occurrence of
riddled basins are fulfilled in this case:As is a chaotic set
with an absolutely continuous invariant measure, the nat
transverse Lyapunov exponentG' is negative, and at least
transversely unstable cycle exists, embedded insideAs ,
whose unstable set belongs to the basin of another attra

FIG. 6. ~a! For a5a1 and«521.08, a stable focus of period 4
of periodic points (xk ,yk), k51, . . . ,4, with (x1 ,y1)
5(0.4399 . . . ,0.3441 . . . ), coexists with a 2-cyclic Milnor attrac-
tor embedded into the diagonal, characterized by a natural tr
verse Lyapunov exponentL'520.119. The dark-gray points be
long to the basin of infinity, the light-gray points to the basin of t
cycle out of the diagonal, the white points to the basin of the Miln
attractor. Indeed, the white region is riddled with light-gray poin
but this is only visible by zooming in on the figure. The unstable
issuing from the transversely unstable 2-cycle embedded in
Milnor attractor ~a repelling node of coordinates 0.868 77 a
0.409 58..., with transverse eigenvaluesl'521.37 and
l i521.72 along the diagonal! converges to the attracting focus
~b! For a5a1 and «521.048 the chaotic attractor located out
the diagonal is very close to a contact with its basin boundary.
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Thus in this case a transition from a locally to a globa
riddled basin ofAs may be obtained independently of an
contact bifurcations of the minimal invariant absorbing ar
it may be simply due to a local bifurcation occurring in th
absorbing areaA.

We remark, however, that if a similar bifurcation occu
outside the minimal absorbing area, i.e., a new attract
cycle is created out ofA, no transition to globally riddling
occurs, because the locally repelled trajectories starting
the Milnor attractor are not allowed to reach an attrac
which is out of the minimal invariant absorbing area~of
course this causes a qualitative change in the structure o
basins out ofA, but no changes of the dynamics insideA are
obtained!.

Taking up our example, the evolution of the attractor o
of the diagonal as the parameter« is increased is rather typi
cal. The stable node becomes a stable focus of period 4,
it loses stability via a Neimark-Hopf bifurcation, after whic
a more complex attractor is created around it. As« is further
increased, it becomes a larger four-piece chaotic area, an
story ends when it has a contact with the boundary of
basin@see Fig. 6~b!, obtained just before such a contact b
furcation#. After this contact bifurcation, calledfinal bifurca-
tion in Ref. @22#, or boundary crisisin Ref. @31#, the chaotic
attractor out of the diagonal disappears@32# and the scenario
of locally riddling may be restored. The chaotic attractor o
of the diagonal becomes a chaotic repellor, however, in
region that was occupied by the attractor just destroy
other attractors may survive, such as stable cycles of v
high period with a small basin with fractal structure, so th
it is usually difficult to distinguish ifB(As) is locally or
globally riddled in such a situation. To sum up, the distin
tion between locally and globally riddling is a very difficu
question, since many other ‘‘windows’’ in the paramet
space may exist in which some stable cycle is created in
the minimal invariant absorbing area via a local bifurcati
and then evolves and disappears, through a mechanism
lar to the ‘‘box-within-a-box’’ bifurcation structure.

We conclude this section with a remark. An interesti
statement is given in Ref.@19#, concerning the effects of th
contact bifurcation that destroys an absorbing area which
cludes a Milnor attractor: denoting by« (a) and« (b) the val-
r-
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ues of riddling bifurcation and of blowout bifurcation, re
spectively, and by« (c) that of contact bifurcation of an
absorbing area with the external frontier, different scenar
are predicted depending on« (a),« (c),« (b) or « (c).« (b). It
is now clear that such conclusions are correct only if« (c)

refers to thecontact bifurcation of the minimal invarian
absorbing area, which includes the Milnor attractor As lo-
cated on the invariant diagonal on which synchronized
namics occur, and the existence of another attractor insidA
and out ofShas been excluded~usually this is not easy to be
proved!.

We believe that the generic case is the one describe
the example shown in Fig. 6, i.e., one or more ‘‘windows
of parameter intervals~for the coupling parameter! exist at
which the basin ofAs is globally riddled with the basin of
some other attractor belonging to the minimal invariant a
sorbing area. Instead, if some other attractor is created ou
the minimal invariant absorbing areaA, we have qualitative
changes in the structure of the basin ofAs in the regions of
the phase plane out ofA, but no changes can be observ
insideA, and in particular no changes concerning the tran
tion from a locally to globally riddled basin. Such chang
may be observed only if, due to the variation of some para
eters, a contact between the boundary ofA and the boundary
of its basin occurs, thus giving the destruction ofA and the
consequent possibility that tongues of the basin of the o
attractor reachAs .

Analogously, a contact may occur between the bound
of A and the boundary of the basin of divergent trajectori
If such a contact occurs in a situation in which a riddl
basin already exists insideA, the effect of the contact bifur-
cation will be that of a further complexity in the riddling
because the basin of attraction ofAs may become riddled
with both the basin of infinity and the basin of a bound
attractor out ofS.
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